Mechanical Engineer Salary

Mechanical Engineering

Mechanical engineering is a discipline of engineering that applies the principles of physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the design, production, and operation of machines and tools. It is one of the oldest and broadest engineering disciplines.

The engineering field requires an understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, and structural analysis. Mechanical engineers use these core principles along with tools like computer-aided engineering and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices and more.
Mechanical engineering emerged as a field during the industrial revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world. Mechanical engineering science emerged in the 19th century as a result of developments in the field of physics. The field has continually evolved to incorporate advancements in technology, and mechanical engineers today are pursuing developments in such fields as composites, mechatronics, and nanotechnology. Mechanical engineering overlaps with aerospace engineering, civil engineering, electrical engineering, petroleum engineering, and chemical engineering to varying amounts.

Mechanical Engineer

Mechanical engineers design and develop everything you think of as a machine – from supersonic fighter jets to bicycles to toasters. And they influence the design of other products as well – shoes, light bulbs and even doors. Many mechanical engineers specialize in areas such as manufacturing, robotics, automotive/transportation and air conditioning. Others cross over into other disciplines, working on everything from artificial organs to the expanding field of nanotechnology. And some use their mechanical engineering degree as preparation for the practice of medicine and law. The mechanical engineer may design a component, a machine, a system or a process. Mechanical engineers will analyze their design using the principles of motion, energy, and force to insure the product functions safely, efficiently, reliably, and can be manufactured at a competitive cost.

Mechanical engineers work in the automotive, aerospace, chemical, computer, communication, paper, and power generation industries. Mechanical engineers will be found in virtually any manufacturing industry. Increasingly, mechanical engineers are needed in the environmental and bio-medical fields. Indeed virtually every product or service in modern life has probably been touched in some way by a mechanical engineer.


Beginning mechanical engineers need at least a bachelor’s degree in engineering. Degrees in mechanical engineering are offered at universities worldwide.

Mechanical engineers are also expected to understand and be able to apply basic concepts from chemistry, physics, chemical engineering, civil engineering, and electrical engineering. Most mechanical engineering programs include multiple semesters of calculus, as well as advanced mathematical concepts including differential equations, partial differential equations, linear algebra, abstract algebra, and differential geometry, among others.

In addition to the core mechanical engineering curriculum, many mechanical engineering programs offer more specialized programs and classes, such as robotics, transport and logistics, cryogenics, fuel technology, automotive engineering,biomechanics, vibration, optics and others, if a separate department does not exist for these subjects.

Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience. In the United States it is common for mechanical engineering students to complete one or moreinternships while studying, though this is not typically mandated by the university. Cooperative education is another option.

Working Environment

Mechanical engineers work in many industries, and their work varies by industry and function. Some specialize in energy systems; applied mechanics; automotive design; manufacturing; materials; plant engineering and maintenance; pressure vessels and piping; and heating, refrigeration, and air-conditioning systems. Mechanical engineering is one of the broadest engineering disciplines. Mechanical engineers may work in production operations in manufacturing or agriculture, maintenance, or technical sales; many are administrators or managers.

Salary Information

Government economists expect job growth for mechanical engineers to be slower than the average for all careers through 2018. Some new opportunities will result from innovations in biotechnology and nanotechnology.

Although overall employment in manufacturing industries where employment of mechanical engineers is concentrated is expected to decrease slightly, employment of mechanical engineers in manufacturing should increase more rapidly as the demand for improved machinery and machine tools grows and as industrial machinery and processes become increasingly complex. Also, emerging technologies in biotechnology, materials science, and nanotechnology will create new job opportunities for mechanical engineers. Additional opportunities for mechanical engineers will arise because a degree in mechanical engineering often can be applied in other engineering specialties. In addition to job openings arising from growth, many openings should result from the need to replace workers who transfer to other occupations or leave the labor force.

Currently, the estimation of the average yearly earnings of mechanical engineers is around $80,000.

Leave a Reply

Your email address will not be published. Required fields are marked *